[1]Kakarla AB,Kong I,Kong C,et al.Extrusion-based bioprinted boron nitride nanotubes reinforced alginate scaffolds:Mechanical,printability and cell viability evaluation[J].Polymers,2022,14(3):486.
[2]Koji I,Shiho S,Masayuki T,et al.Ectopic bone formation in muscles using injectable bone-forming material consisting of cross-linked hyaluronic acid,bone morphogenetic protein,and nanohydroxyapatite[J].Nano Biomedicine,2019,11(1):11-20.
[3]Liu F,Wang X,Li Y,et al.Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration[J].Stem Cell Res Ther,2022,13(1):26.
[4]Shamekhi MA,Mirzadeh H,Mahdavi H,et al.Graphene oxide containing chitosan scaffolds for cartilage tissue engineering[J].Int J Biol Macromol,2019(127):396-405.
[5]Kashi M,Baghbani F,Moztarzadeh F,et al.Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering[J].Int J Biol Macromol,2018,107(Pt B):1567-1575.
[6]Aswathy SH,NarendraKumar U,Manjubala I.Physicochemical properties of cellulose-based hydrogel for biomedical applications[J].Polymers(Basel),2022,14(21):4669.
[7]Mohan N,Mohanan PV,Sabareeswaran A,et al.Chitosanhyaluronic acid hydrogel for cartilage repair[J].Int J Biol Macromol,2017,104(Pt B):1936-1945.
[8]Sahai N,Tewari RP,Gogoi M.3D printed chitosan composite scaffold for chondrocytes differentiation[J].Curr Med Imaging,2021,17(7):832-842.
[9]Raia NR,Partlow BP,McGill M,et al.Enzymatically crosslinked silkhyaluronic acid hydrogels[J].Biomaterials,2017(131):58-67.
[10]Singh BN,Pramanik K.Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue en-gineering[J].Tissue Cell,2018(55):83-90.
[11]Li T,Song X,Weng C,et al.Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomecha-nical properties has application potential as cartilage scaffold[J].Int J Biol Macromol,2019(137):382-391.
[12]Liu J,Yang B,Li M,et al.Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering[J].Carbohydr Polym,2020(227):115335.
[13]Zhou Y,Liang K,Zhao S,et al.Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nano-composite hydrogels as potential scaffolds for cartilage tissue engineering[J].Int J Biol Macromol,2018(108):383-390.
[14]Mallick SP,Singh BN,Rastogi A,et al.Evaluation of poly(L-lactide)and chitosan composite scaffolds for cartilage tissue regeneration[J].Des Monomers Polym,2016,19(3):271-282.
[15]Mallick SP,Singh BN,Rastogi A,et al.Design and evaluation of chit-osan/poly(L-lactide)/pectin based composite scaffolds for cartilage tissue regeneration[J].Int J Biol Macromol,2018(112):909-920.
[16]Keikhaei S,Mohammadalizadeh Z,Karbasi S,et al.Evaluation of the effects of β-tricalcium phosphate on physical,mechanical and biological properties of poly(3hydroxybutyrate)/chitosan electrospun scaffold for cartilage tissue engineering applications[J].Materials Technology,2019,34(10):615-625.
[17]Aranaz I,Martínez-Campos E,Moreno-Vicente C,et al.Macroporous calcium phosphate/chitosan composites prepared via unidirectional ice segregation and subsequent freezedrying[J].Materials,2017,10(5):516.
[18]Liu HY.Chitosan/hydroxyapatite composite scaffolds for articular cartilage injury[J].Chin J Tissue Eng Res,2017,21(2):244-248.
[19] Cao L,Zhang F,Wang Q,et al.Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2017(79):697-701.
[20]Mirmusavi MH,Zadehnajar P,Semnani D,et al.Evaluation of physical,mechanical and biological properties of poly 3hydro-xybutyrate-chitosan-multiwalled carbon nanotube/silk nanomicro composite scaffold for cartilage tissue engineering applications[J].Int J Biol Macromol,2019(132):822-835.
[21]Mirmusavi MH,Karbasi S,Semnani D,et al.Characterization of silk/poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube micro-nano scaffold:A new hybrid scaffold for tissue engineering applications[J].J Med Signals Sens,2018,8(1):46-52.
[22]Li C,Wang K,Zhou X,et al.Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering[J].Biomed Mater,2019,14(2):025006.
[23]Kozlowska J,Stachowiak N,Sionkowska A.Preparation and characterization of collagen/chitosan poly(ethylene glycol)/nanohydroxyapatite composite scaffolds[J].Polym Adv Technol,2019,30(3):799803.
[24]Islam MM,Khan MN,Biswas S,et al.Preparation and characterization of bijoypur clay-crystalline cel-lulose composite for application as an adsorbent[J].Adv Mater Sci,2017,2(3):1-7.
[25]Bhowmick A,Mitra T,Gnanamani A,et al.Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells[J].Carbohydr Polym,2016(141):82-91.
[26]Bhowmick A,Banerjee SL,Pramanik N,et al.Organically modified clay supported chitosan/hydroxyapatitezinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering[J].Int J Biol Macromol,2018(106):11-19.
[27]Tithito T,Suntornsaratoon P,Charoenphandhu N,et al.Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosangraftedpoly(methyl methacrylate)for Bone Tissue Engineering[J].Biomed Mater,2019,14(2):025013.
[28]Lei Y,Xu Z,Ke Q,et al.Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2017(72):134-142.
[29]Tavakoli M,Bakhtiari S,Karbasi S.Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement:Physical,mechanical and biological evaluation[J].Int J Biol Macromol,2020(149):783-793.
[30]Valencia Zapata ME,Mina Hernandez JH,Grande Tovar CD,et al.Novel bioactive and antibacterial acrylic bone cement nanocomposites modified with graphene oxide and chitosan[J].Int J Mol Sci,2019,20(12):2938.
[31]Fang CH,Lin YW,Sun JS,et al.The chitosan/tri-calcium phosphate bio-composite bone cement promotes better osteo-integration:An in vitro and in vivo study[J].J Orthop Surg Res,2019,14(1):162.
[32]Yang L,Zhong XZ,Hui LL,et al.Surface modification of chitosan film via polydopamine coating to promote biomineralization in bone tissue engineering[J].J Bioact Compat Pol,2018,33(2):134-145.
[33]Witte TM,Wagner AM,Fratila LE,et al.Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications[J].J Biomed Mater Res A,2020,108(5):1122-1135.
[34]Hu Y,Chen J,Fan T,et al.Biomimetic miner-alized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydro-xyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue en-gineering[J].Colloids Surf B Biointerfaces,2017(157):93-100.
[35]Aidun A,Firoozabady A,Moharrami M,et al.Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold:Enhanced osteogenic properties for bone tissue engineering[J].Artif Organs,2019,43(10):E264-E281.
[36]Doench I,TorresRamos MEW,Montembault A,et al.Injectable and gel-lable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering[J].Polymers(Basel),2018,10(11):1202.
[37]Doench I,Ahn T,David L,et al.Cellulose nanofiber-re-inforced chitosan hydrogel composites for intervertebral disc tissue repair[J].Biomimetics(Basel),2019,4(1):19.
[38]Ghorbani M,Ai J,Nourani MR,et al.Injectable natural polymer compound for tissue engineering of intervertebral disc:in vitro study[J].Mater Sci Eng C Mater Biol Appl,2017(80):502-508.
[39]Alinejad Y,Adoungotchodo A,Grant MP,et al.Injectable chitosan hydrogels with enhanced mechanical properties for nucleus pulposus regeneration[J].Tissue Eng Part A,2019,25(5-6):303-313.
[40]Yuan D,Chen Z,Xiang X,et al.The establishment and biological assessment of a whole tissue‐engineered intervertebral disc with PBST fibers and a chitosan hydrogel in vitro and in vivo[J].J Biomed Mater Res B Appl Biomater,2019,107(7):2305-2316.