Abstract:Objective〓To investigate the regions of structural vulnerability within the femoral head of patients suffering from osteoporotic femoral neck fractures,aiming to contribute insights into the underlying mechanisms of such fractures and inform future research endeavors.Methods〓Utilizing micro-CT scanning technology,we examined six femoral head specimens procured from patients [(5 males and 1 female,aged 68~82 years,mean age (73.17±4.92)years;3 left-sided and 3 right-sided)] with confirmed osteoporotic femoral neck fractures,admitted to Beijing Chao-Yang Hospital,Capital Medical University.High-resolution imaging enabled us to reconstruct and comprehensively analyze the bone microstructure in three distinct yet critical areas:The peripheral region of the femoral head,the supralateral quadrant of the femoral head,and the inferior aspect proximal to the fracture site within the femoral neck.Subsequently,we conducted a comparative analysis of bone structural parameters across these regions to identify potential areas of weakness.Results〓In comparing the supralateral region of the femoral head to its peripheral zones,no statistically significant variations were observed in trabecular separation,thickness,number,structural model index,trabecular connectivity density,tissue bone mineral density,volume bone mineral density,bone volume fraction,or bone surface/volume ratio (P>0.05).However,three-dimensional reconstructions of the supralateral area revealed increased trabecular separation,decreased trabecular thickness,and a noticeable decrease in trabecular number,accompanied by a more rod-like trabecular structure,indicative of structural weakening.Contrastingly,the lowest region of the femoral neck fracture demonstrated statistically significant increases in trabecular thickness,bone mineral density,and bone volume fraction compared to the peripheral regions,while the bone surface/volume ratio and structural model index decreased significantly (P<0.05).Despite this,trabecular separation,number,and connectivity density did not exhibit statistically significant differences (P>0.05).Three-dimensional reconstructions highlighted that the trabecular thickness in the lowest region of the fracture was notably thicker than in the peripheral zones,exhibiting a more plate-like trabecular structure.Conclusion〓The supralateral region of the femoral head is a potentially weak structure that may be prone to fracture during sideways falls.There was no apparent bone weakness at the bottom of the fracture site in the medial aspect of the femoral neck.
[1]侯宜刚,赵恒奎,张波,等.老年人骨质疏松与髋部骨折发病关系的分析[J].实用骨科杂志,2010,16(1):73-74.
[2]杜心如,续开亮,要星晨,等.骨质疏松性股骨颈骨折近端形态特点及其临床意义[J].中国骨与关节损伤杂志,2022,37(6):571-575.
[3]郑利钦,林梓凌,李鹏飞,等.动态载荷下松质骨对骨质疏松性股骨颈骨折断裂力学影响的有限元分析[J].中国组织工程研究,2019,23(12):1887-1892.
[4]Su YB,Wang L,Wu XB,et al.The spatial differences in bone mineral density and hip structure between low-energy femoral neck and trochanteric fractures in elderly Chinese using quantitative computed tomography[J].Bone,2019 (124):62-68.
[5]崔志刚,杜心如,孔祥玉.骨质疏松时股骨颈结构薄弱区影像解剖学观察及其临床意义[J].中国临床解剖学杂志,2016,34(5):504-508.
[6]祝晓忠,梅炯,倪明,等.股骨近端骨小梁结构的大体解剖和影像重建分析[J].中国修复重建外科杂志,2019,33(10):1254-1259.
[7]张丽,戴如春,谢芬,等.男性骨质疏松患者股骨头松质骨微结构区域差异的研究[J].中华放射学杂志,2010,44(6):639-644.
[8]Brommage R,Jeter-Jones S,Xiong W,et al.Micro-CT analyses of mouse femoral neck architecture[J].Bone,2021(145):115040.
[9]段玮轩,程亮亮,赵德伟.激素性股骨头坏死与股骨颈骨折患者股骨头内骨小梁形态学对比研究[J/CD].中华损伤与修复杂志(电子版),2020,15 (2):84-89.〖JP〗
[10]续开亮.老年头颈型股骨颈骨折标本大体与X线及Micro-CT观察[D].北京:首都医科大学,2013.
[11]Tanck E,Bakker AD,Kregting S,et al.Predictive value of femoral head heterogeneity for fracture risk[J].Bone,2009,44(4):590-595.
[12]王程,苟文隆,徐小龙,等.人股骨头坏死标本不同区域骨小梁的显微结构特征及病理学表现[J].解放军医学院学报,2014,35(5):463-469.
[13]续开亮,杜心如.股骨颈骨折解剖分型与骨质疏松程度关系的临床研究[J].中华解剖与临床杂志,2015,20(4):330-334.
[14]庄华烽,李毅中,林金矿,等.脆性股骨颈骨折患者股骨颈骨密度及结构的变化[J].中华老年医学杂志,2014(3):282-285.
[15]Ito M,Nishida A,Aoyagi K,et al.Effects of risedronate on trabecular microstructure and biomechanical properties in ovariectomized rat tibia[J].Osteoporosis International,2005,16(9):1042-1048.
[16]Perilli E,Baleani M,Ohman C,et al.Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur[J].J Biomech,2008,41(2):438-446.
[17]Keiler AM,Zierau O,Vollmer G,et al.Estimation of an early meaningful time point of bone parameter changes in application to an osteoporotic rat model with in vivo microcomputed tomography measurements[J].Laboratory Animals,2012,46(3):237-244.
[18]陈锐,梅炯.股骨距的结构特点、生物力学及其临床意义[J].中国临床解剖学杂志,2016,34(4):476-478.
[19]安永胜,杜心如,石友民,等.外斜位X线片显示股骨距影像特征及其临床意义[J].中国临床解剖学杂志,2005,23(4):393-395.
[20]de Bakker PM,Manske SL,Ebacher V,et al.During sideways falls proximal femur fractures initiate in the superolateral cortex:Evidence from high-speed video of simulated fractures[J].J Biomech,2009,42(12):1917-1925.
[21]郑利钦,林梓凌,何祥鑫,等.有限元法分析不同侧方跌倒角度下股骨颈骨折裂纹扩展的断裂力学特征[J].中国组织工程研究,2019,23(8):5.
[22]汪爱嫒,彭江,孙明学,等.股骨颈骨折病人的股骨头样本结构的Micro-CT评估[J].中国矫形外科杂志,2006,14(12):909-911.