Abstract:Objective To investigate the stress distribution of the femoral stem with 3D printing trabecular structure by establishing solid structure and trabecular structure femoral stem prosthesis and using finite element simulation.Methods By comparing the three-dimensional models of solid structure prosthesis and 3D printing trabecular structure femoral stem prosthesis,a finite element model was established to simulate the standing state of prosthesis with different structural designs after implantation,and the biomechanical properties of the two designs were compared.Results The results showed that the peak stress in the finite element model appeared in the area of 3D printing trabecular structure.When standing on one foot,the peak stress of femoral stem with 3D printing trabecular structure was 8.6 MPa.The peak stress of the femoral stem with 3D printing trabecular structure was 3.9 MPa when the feet were standing.Conclusion Compared with the solid structure of femoral stem prosthesis,the stress distribution of 3D printing trabecular bone structure is significantly optimized,and the maximum stress value is significantly reduced;therefore,the superior mechanical bearing performance of 3D printing bone trabecular structure reduces the stress shielding effect of femoral stem,which is more conducive to bone growth around the prosthesis,thus avoiding prosthesis loosening and providing safety guarantee for patients' rehabilitation.
作者简介: 葛志强(1975- ),男,医师,冀中能源峰峰集团有限公司总医院,056200。
引用本文:
葛志强 1,葛志霞 1,陈佳 2,杨洁 1,夏志勇 1,杨振环 1,崔书伟 1,王晖 1. 基于3D打印的骨小梁结构股骨柄生物力学仿真分析[J]. 实用骨科杂志, 2020, 26(7): 605-608.
Ge Zhiqiang 1,Ge Zhixia 1,Chen Jia 2,et al. Biomechanical Simulation Analysis of Femoral Stem with Trabecular Structure Based on 3D Printing Technology. sygkzz, 2020, 26(7): 605-608.
[1]马韧石.全髋关节置换术假体位置的生物力学研究及临床应用[D].吉林大学,2012.
[2]Halley DK,Glassman AH.Twentyto twenty-sixyear radiographic review in patients 50 years of age or younger with cemented Charnley low-friction arthroplasty[J].J Arthrop,2003,18(7):79-85.
[3]何荣新,罗银森,严世贵,等.全骸置换前后股骨应力变化的三维有限元分析[J].中华医学杂志,2004,84(18):1549-1553.
[4]严世贵,何荣新,陈维善,等.全骸关节置换前后股骨应力变化的有限元分析[J].中华骨科杂志,2004,24(9):561-565.
[5]时亮,惠文斌,刘宗智,等.有限元法分析髋关节表面置换后髋关节的力学特点[J].中国组织工程研究,2017,21(27):4265-4270.
[6]Ahmadi SM,Yavari SA,WauthleR,et al.Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells:the mechanical and morphological properties[J].MAT,2015,8 (4):1871-1896.
[7]Roy S,Khutia N,Das S,et al.Understanding compressive deformation behavior of porous Ti using finite element analysis[J].Mater Sci Eng C Mater Biol Appl,2016(64):436-443.
[8]ArabnejadS,Johnston RB,Pura JA,et al.High-strength porous biomaterials for bone replacement:A strategy to assess the interplay between cell morphology,mechanical properties,bone ingrowth and manufacturing constraints[J].ActaBiomater,2016,30(8):345-356.
[9]SimoneauC,Terriault P,Bruno J.Development of a porous metallic femoral stem:Design,manufacturing,simulation and mechanical testing[J].Mater Design,2017(114):546-556.
[10]李林根.股骨假体柄优化设计研究[D].华侨大学,2017.
[11]尚希福,戴克戎,汤亭亭.人工关节骨水泥固定的应用技术现状[J].临床骨科杂志,2002,5(3):238-240.
[12]石峰,李澎,Periacarpen M,等.骨水泥型和非骨水泥型股骨柄假体在骨质疏松患者人工股骨头置换中的应用[J].中国组织工程研究,2016,20(13):1859-1865.
[13]胡侦明.骨小梁的改建[J].国外医学(创伤与外科基本问题分册),1996,17(3):36-38.
[14]马宗民,李淑娴,朱兴华.基于 Wolff定律的各向异性骨再造模型[J].中国生物医学工程学报,2007,26 (6):908-911.
[15]陈宇.基于激光三维打印的类骨小梁多孔钛种植体的设计及其体内成骨效应研究[D].重庆医科大学,2017.
[16]曹玄扬.多孔网格结构的拓扑优化设计及SLM制造[D].北京工业大学,2016.
[17]ArabnejadS,Johnston B,Tanzer M.Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty[J].J Orthop Res,2017,35(8):1774-1783.