[1]Hutson TH,Di Giovanni S.The translational landscape in spinal cord injury:focus on neuroplasticity and regeneration[J].Nat Rev Neurol,2019,15(12):732-745.
[2]Tahmasebi F,Barati S.Effects of mesenchymal stem cell transplantation on spinal cord injury patients[J].Cell Tissue Res,2022,389(3):373-384.
[3]Yuan S,Shi Z,Cao F,et al.Epidemiological features of spinal cord injury in China:A systematic review[J].Front Neurol,2018(9):683.
[4]冯世庆.脊髓损伤基础研究的现状和展望[J].中华实验外科杂志,2021,38(7):1193-1198.
[5]Ye LX,An NC,Huang P,et al.Exogenous platelet-derived growth factor improves neurovascular unit recovery after spinal cord injury[J].Neural Regen Res,2021,16(4):765-771.
[6]Wariyar SS,Brown AD,Tian T,et al.Angiogenesis is critical for the exercise-mediated enhancement of axon regeneration following peripheral nerve injury[J].Exp Neurol,2022(353):114029.
[7]Haggerty AE,Maldonado-Lasuncion I,Oudega M.Biomaterials for revascularization and immunomodulation after spinal cord injury[J].Biomed Mater,2018,13(4):044105.
[8]Jin LY,Li J,Wang KF,et al.Bloodspinal cord barrier in spinal cord injury:A review[J].J Neurotrauma,2021,38(9):1203-1224.
[9]Yamazaki Y,Liu CC,Yamazaki A,et al.Vascular ApoE4 impairs behavior by modulating gliovascular function[J].Neuron,2021,109(3):438-447.
[10]K-hli P,Otto E,Jahn D,et al.Future perspectives in spinal cord repair:Brain as saviour? TSCI with concurrent TBI:Pathophysiological interaction and impact on MSC treatment[J].Cells,2021,10(11):2955.
[11]Losey P,Young C,Krimholtz E,et al.The role of hemorrhage following spinal-cord injury[J].Brain Res,2014(1569):9-18.
[12]Zhou R,Li J,Wang R,et al.Moderate systemic therapeutic hypothermia is insufficient to protect bloodspinal cord barrier in spinal cord injury[J].Front Neurol,2022(13):1041099.
[13]Oudega M.Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair[J].Cell Tissue Res,2012,349(1):269-288.
[14]Jiang D,Gong F,Ge X,et al.Neuronderived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes[J].J Nanobiotechnology,2020(18):105.
[15]Duan YY,Chai Y,Zhang NL,et al.Microtubule stabilization promotes microcirculation reconstruction after spinal cord injury[J].J Mol Neurosci,2021,71(3):583-595.
[16]Mayo JN,Kauer SD,Brumley MR,et al.Pericytes improve locomotor recovery after spinal cord injury in male and female neonatal rats[J].Microcirculation,2020,27(7):e12646.
[17]Adams RH,Eichmann A.Axon guidance molecules in vascular patterning[J].Cold Spring Harb Perspect Biol,2010,2(5):a001875.
[18]Shu M,Hong D,Lin H,et al.Singlecell chromatin accessibility identifies enhancer networks driving gene expression during spinal cord development in mouse[J].Dev Cell,2022,57(24):2761-2775.
[19]Blum JA,Klemm S,Shadrach JL,et al.Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons[J].Nat Neurosci,2021,24(4):572-583.
[20]Milich LM,Choi JS,Ryan C,et al.Singlecell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord[J].J Exp Med,2021,218(8):e20210040.
[21]He Y,Tacconi C,Dieterich LC,et al.Novel blood vascular endothelial subtype-specific markers in human skin unearthed by single-cell transcriptomic profiling[J].Cells,2022,11(7):1111.
[22]Yao C,Cao Y,Wang D,et al.Single-cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury[J].FASEB J,2022,36(7):e22393.
[23]Liu W,Guo S,Tang Z,et al.Magnesium promotes bone formation and angiogenesis by enhancing MC3T3E1 secretion of PDGF-BB[J].Biochem Biophys Res Commun,2020,528(4):664-670.
[24]Jia Y,Wang Q,Liang M,et al.KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation[J].J Transl Med,2022,20(1):627.
[25]Yoshitomi Y,Ikeda T,Saito-Takatsuji H,et al.Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development[J].Int J Mol Sci,2021,22(6):2804.
[26]Sacilotto N,Chouliaras KM,Nikitenko LL,et al.Corrigendum:MEF2 transcription factors are key regulators of sprouting angiogenesis[J].Genes Dev,2022,36(19-20):1096.
[27]Apte RS,Chen DS,Ferrara N.VEGF in signaling and disease:Beyond discovery and development[J].CELL,2019,176(6):1248-1264.
[28]Huang JH,Xu Y,Yin XM,et al.Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats[J].Neuroscience,2020(424):133-145.
[29]Xin W,Qiang S,Jianing D,et al.Human bone marrow mesenchymal stem cell-derived exosomes attenuate blood-spinal cord barrier disruption via the TIMP2/MMP pathway after acute spinal cord injury[J].Mol Neurobiol,2021,58(12):6490-6504.
[30]Wang H,Chen L,Wang S,et al.Tetrandrine promotes angiogenesis via transcriptional regulation of VEGF-A[J].Vascul Pharmacol,2021(141):106920.
[31]Cheng R,Zhu G,Ni C,et al.P2Y2 receptor mediated neuronal regeneration and angiogenesis to affect functional recovery in rats with spinal cord injury[J]Neural Plast,2022(2022):2191011.
[32]Goldshmit Y,Galea MP,Bartlett PF,et al.EphA4 regulates central nervous system vascular formation[J].J Comp Neurol,2006,497(6):864-875.
[33]Wang G,Lu P,Qiao P,et al.Blood vessel remodeling in late stage of vascular network reconstruction is essential for peripheral nerve regeneration[J].Bioeng Transl Med,2022,7(3):e10361.
[34]Cao Y,Xu Y,Chen C,et al.Local delivery of USCderived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis[J].Stem Cell Res Ther,2021,12(1):20.
[35]Kumar H,Lim CS,Choi H,et al.Elevated TRPV4 levels contribute to endothelial damage and scarring in experimental spinal cord injury[J].J Neurosci,2020,40(9):1943-1955.
[36]Liu X,Xu W,Zhang Z,et al.Vascular endothelial growth factor-transfected bone marrow mesenchymal stem cells improve the recovery of motor and sensory functions of rats with spinal cord injury[J].Spine,2020,45(7):E364-E372.
[37]Liu WZ,Ma ZJ,Li JR,et al.Mesenchymal stem cell-derived exosomes:therapeutic opportunities and challenges for spinal cord injury[J].Stem Cell Res.Ther,2021,12(1):102.
[38]Zhong D,Cao Y,Li CJ,et al.Highlight article:Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis[J].Exp Biol Med,2020,245(1):54-65.
[39]Warren PM,Kissane RWP,Egginton S,et al.Oxygen transport kinetics underpin rapid and robust diaphragm recovery following chronic spinal cord injury[J].J Physiol,2021,599(4):1199-1224.
[40]Tran KA,Partyka PP,Jin Y,et al.Vascularization of self-assembled peptide scaffolds for spinal cord injury repair[J].Acta Biomater,2020(104):76-84.
[41]Huang JH,He H,Chen YN,et al.Exosomes derived from M2 macrophages improve angiogenesis and functional recovery after spinal cord injury through HIF-1α/VEGF axis[J].Brain Sci,2022,12(10):1322.
[42]Liu L,Wan J,Dai M,et al.Effects of oxygen generating scaffolds on cell survival and functional recovery following acute spinal cord injury in rats[J].J Mater Sci Mater Med,2020,31(12):115.
[43]Li X,Zhang C,Haggerty AE,et al.The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord[J].Biomaterials,2020(245):119978.
[44]Altinova H,Hammes S,Palm M,et al.Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury[J].Biomed Mater Bristol Engl,2020,15(1):015012. |
|
|